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Abstract
The design of quantum algorithms typically assumes the availability
of an ideal quantum computer, characterized by full connectivity,
noiseless operation, and unlimited coherence time. However, Noisy
Intermediate-Scale Quantum (NISQ) devices present a stark con-
trast, with a limited number of qubits, non-negligible quantum
operation errors, and stringent constraints on the connectivity of
physical qubits within a Quantum Processing Unit (QPU). This
necessitates the dynamic remapping of logical qubits to physical
qubits within the compiler to facilitate the execution of two-qubit
gates in the algorithm. However, this introduces additional opera-
tions, consequently reducing the fidelity of the algorithm. Therefore,
minimizing the number of added gates becomes crucial. Finding
such an optimal routing problem is NP-hard, and the task is con-
ventionally addressed using human-crafted heuristics to search for
SWAP sequences, but these lack performance guarantees. In this
study, we employ a Seq2Seq machine learning model for the qubit
routing task, incorporating a Transformer neural network to learn
the routing information in the gate and SWAP sequence. Compared
to heuristic search-based algorithms, our approach significantly
reduces the overhead of quantum computing resources required
to adapt logical circuits to physical circuits executable on specific
quantum backend hardware.
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1 Introduction

Quantum computing (QC) possesses the capability to address many
problems that are intractable for classical computers [10]. Recent
advancements have seen significant improvements in the devel-
opment of quantum computers across various physical platforms,
including superconducting qubits, trapped ions, and neutral-atom
arrays. However, the performance of current Noisy Intermediate-
Scale Quantum (NISQ) devices [11] is limited by their imperfect
operations, which prevent them from achieving their full computa-
tional potential.

In this context, a quantum compiler plays a crucial role by con-
verting high-level quantum algorithms into executable instructions
on quantum hardware. This process involves qubit mapping, gate
decomposition, and the insertion of SWAP gates to meet the connec-
tivity constraints of quantum architectures [8]. Regrettably, these
necessary adaptations increase the complexity of operations, exacer-
bate the effects of noise, and diminish overall efficiency. Optimizing
the compilation process is therefore essential to reduce overhead
costs and improve the robustness and efficiency of quantum com-
putations.

Our research primarily focuses on optimizing qubit routing to
minimize the number of required SWAP gates.While asymptotically
optimal methods [19, 20] exist, their performance on individual
instancesmay deviate by a constant factor from the optimal solution.
Exact solvers [9, 14] can yield optimal results, but their practical
application is hindered by scalability issues. Moreover, efficient
heuristic methods such as the bidirectional heuristic search [5] and
filtered depth-limited search [6] often fall short of reaching optimal
solutions. Reinforcement learning-based compilers have shown
promise on smaller circuits, but their scalability and effectiveness
on larger circuits remain to be validated [4].

To address these limitations, we propose a Sequence-to-Sequence
(Seq2Seq) machine learning model to enhance qubit routing within
our quantum compilation framework [13]. This model employs
a Transformer neural network architecture [16] to process gate
sequences and generate the required SWAP sequences effectively.

https://doi.org/10.1145/3649329.3663510
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Figure 1: An example of the qubit routing process. (a) Origi-
nal logical circuit of 5 CXs. (b) Target QPU backend. (c) The
compiled circuit on QPU. (d) SWAP gate decomposition.

As detailed in Section 4, our approach exhibits significant advance-
ments compared to state-of-the-art heuristic compilers [5, 6], achiev-
ing an average reduction of 71% and 30% in the number of inserted
SWAP gates, respectively. Additionally, it accelerates the compiler
runtime by an average of 138x on IBM Q20 Tokyo.

2 Background and Motivation
2.1 Qubit Mapping and Routing
We begin with a practical example to illustrate the problem of qubit
routing, as depicted in Fig. 1. A quantum circuit composed of 5 CXs
(Fig. 1(a)) is to be executed on a 4-qubit QPU backend (Fig. 1(b)). The
initial mapping is 𝜋0 as shown on the left of Fig. 1(c), for which CX1
and CX2 are directly executable. However, CX3 cannot be executed
since 𝑄0 and 𝑄2 are not directly coupled. A standard solution is
to swap the states of 𝑄1 and 𝑄2, which, in this case, enables the
execution of CX3, CX4 and CX5. The inserted SWAP gate updates
the qubit mapping status to 𝜋1 (Fig. 1(c)), and it can be implemented
by three CX gates (Fig. 1(d)). From this example, it is also evident
that single-qubit gates do not impact qubit mapping and routing.
Therefore, we will focus solely on circuits containing two-qubit
gates.

In compiling deep quantum circuits with a substantially larger
number of qubits, finding a qubit routing solution that minimizes
the number of SWAP insertions significantly impacts the perfor-
mance of circuit execution. That is because an excessive number
of extra SWAPs significantly expand the circuit depth and size, ag-
gravating the influence of qubit noise. Several heuristic approaches
have been proposed to tackle this problem. Zulehner et al. [21]
employ an exhaustive searching approach to traverse all the pos-
sible SWAP combinations. Li et al. [5] proposed the SWAP-based
bidirectional heuristic search algorithm, finding the SWAP oper-
ation by minimizing the distance of qubit pairs in the front layer
of the circuit. In Ref. [6], the authors define search depth 𝑘 as con-
sidering all possible SWAP sequences up to length 𝑘 . The authors
enhance the fixed-depth heuristic search algorithm with filtering
and fallback operation. One can observe that increasing 𝑘 in the
heuristic method can give significant rise to the optimality of its
solution. However, it leads to an exponential rise in the search cost.
Figure 2 shows how the number of added SWAPs, normalized to
the compiler’s output in this work, varies with search time cost for
different routing algorithms on IBM Q20.
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Figure 2: The normalized number of inserted SWAP gates
(#Gates) and the runtime cost are compared for three compil-
ers: TopGraph [6](circle), SABRE [5](square), and ourmethod
(triangle), across four quantum circuits on IBM Q20. It can be
observed that SABRE [5] (square) generally has a small time
cost, and TopGraph [6] (circle) has a small #Gates cost given
enough runtime. In comparison, our method significantly re-
duces the #Gates to even better than that in TopGraph, while
keeping a runtime similar to that in SABRE.

3 ML-based Optimization
We develop a machine learning (ML)-based optimization method,
leveraging the Transformer neural network [16] model to learn
the SWAP insertion strategy for qubit routing. The operational
framework of ourmodel takes sequences of qubit gates as inputs and
produces the necessary SWAP operations as outputs, considering
the specific connection topology of QPU. Training datasets are
collected independently for various backend connection topologies.

The framework design is shown in the green box of Fig. 3. In this
work, we train Transformer models separately for distinct backend
connection topologies to generate the SWAP sequence needed for
routing. To ensure that the generated SWAP sequence effectively
aids the qubit routing process, it is evaluated using an evaluation
function to assess its quality. Specifically, the heuristic evaluation
function in our framework is defined as follows:

𝑒𝑣𝑎𝑙 (𝜋) = (#𝑔𝑒𝑥𝑒 × 𝛽 +
1
𝑘

𝐿∑︁
𝑖=0

𝛼𝑙𝑦𝑟 (𝑔[𝑖 ] ) × (𝛾 − 𝑑𝑖𝑠𝑡 (𝑔[𝑖], 𝜋)). (1)

Here, 𝜋 represents the qubit mapping, #𝑔𝑒𝑥𝑒 denotes the number
of executable two-qubit gates in the input gate sequence given the
qubit mapping 𝜋 , and 𝑔 represents the next 𝐿 input gates in the
circuits. Additionally, 𝑙𝑦𝑟 (𝑔[𝑖]) refers to the index of the gate layer
containing 𝑔[𝑖] in the input circuit, with the layers indexed starting
from the front gate layer. The variable 𝑑𝑖𝑠𝑡 represents the topology
distance between two physical qubits supporting the two-qubit
gate, as described in Ref. [5]. Furthermore, we introduce adjustable
parameters 𝛼 , 𝛽 , and 𝛾 .
3.1 Algorithm Design
In this section, we show how to train and apply Transformer [2, 17],
an ML model originally designed for natural language processing
tasks, for quantum compilation. Given a sequence of logical quan-
tum gates 𝐶ℓ , we first execute the gates that are compatible with
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Figure 3: An overview of our compilation framework.

qubit connectivity on hardware until we encounter a gate that is
not directly executable. We then feed the first 𝐿 gates in 𝐶ℓ to the
trained Transformer model to generate a SWAP sequence 𝑠 which
ideally aids the rest execution. We use the 𝑒𝑣𝑎𝑙 function to deter-
mine whether inserting 𝑠 provides any gain. If it does, we accept it
and proceed. If not, we employ a “fallback” heuristics [6] to resolve
the first non-executable gate. Details of the Transformer-based
routing procedure are given in Algorithm. 1 and Figure 3.

Algorithm 1ML-optimized qubit routing
Input: Initial mapping 𝜋0, logical quantum circuit 𝐶ℓ , Seq2Seq

neural network model 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 , evaluation function 𝑒𝑣𝑎𝑙 ,
number 𝐿 of lookahead gates.

Output: Compiled quantum circuit 𝐶𝑝 with physical qubit index.
1: 𝜋 ← 𝜋0, 𝐶𝑝 ← ∅
2: while 𝐶𝑙 ≠ ∅ do
3: 𝑠𝑒 ← executable gate sequence prefix under (𝐶ℓ ,𝜋 )
4: 𝐶ℓ ← 𝐶ℓ − 𝑠𝑒 , 𝐶𝑝 ← 𝐶𝑝 + 𝑠𝑒
5: 𝑠𝑓 ← the gate sequence of the first 𝐿 gates in 𝐶ℓ

6: Output SWAP sequence 𝑠 ← 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 (𝑠𝑓 )
7: 𝜋 ′ ← update 𝜋 using 𝑠
8: if 𝑒𝑣𝑎𝑙 (𝜋 ′) > 𝑒𝑣𝑎𝑙 (𝜋) then
9: 𝜋 ← 𝜋 ′, 𝐶𝑝 ← 𝐶𝑝 + 𝑠
10: else
11: generate fallback SWAP gate sequence 𝑠′
12: 𝜋 ← update 𝜋 using 𝑠′, 𝐶𝑝 ← 𝐶𝑝 + 𝑠′
13: end if
14: end while

Token Embedding. In our compiler, we begin by converting gate
information from the logical circuit into tensors, which are then fed
as input to the Transformer. This process involves combining the
gate information with the current qubit mapping status. Initially,
we translate the gates from logical qubit indexing to physical qubit
indexing. Subsequently, each physical qubit gate is represented
by a token number (depicted as red numbers in Fig. 3), based on
the indices of the physical qubits involved. Finally, a token embed-
ding layer is employed to convert these tokens into tensors with
dimension 1024, utilizing the token embedding model provided by
PyTorch.

Positional Encoding. In the NLP task, position information is
included with each token in the input sequence to help the Trans-
former model understand the structure of the sequence. In this
study, the model processes the first 𝐿 = 10 gates from the original
circuit as the input sequence. The position of each two-qubit gate
within this sequence is indicated by its layer index in the logical
circuit, starting from the front layer (depicted as blue numbers in
Fig. 3). We employ the positional encoding algorithm described in
Ref. [16] to facilitate this encoding.
Sequence Padding. The output length of the Transformer model
in this work is fixed at 𝑘 = 3 (the green numbers in Fig. 3). In case
the output SWAP sequence depth is less than 𝑘 , we pad 0 at the end
to make the length equal to 𝑘 .

3.2 Training Stage
Given a QPU backend topology, the learning process is supervised.
It involves randomly generated circuits with extended sequences
of two-qubit gates applied to two arbitrary physical qubits. We
use a heuristic approach to search for the best initial mapping [1],
by maximizing an 𝑒𝑣𝑎𝑙 function in Eq. (1). Combined with the
generated initial mapping set Π, these random circuits form the
input setI for the training data. For each sequence inI, we leverage
a novel fix-depth filtered searching (Ref. [1]) to obtain a high-quality
solution of SWAP sequence, which is used as the output label O of
the training data.

4 Evaluation
4.1 Experiment Setup
Our compilation framework is implemented in C++, with model
training conducted in Python using PyTorch. The Transformer
model is built with PyTorch.nn. Evaluations were performed on
a CentOS-7 server featuring an Intel Xeon Platinum 8255C CPU
(320 GB memory) with 80 CPU cores at 2.5 GHz, and a NVIDIA
V100 GPU with 5120 CUDA cores at 1.2 GHz. We collected 640K
data points for each QPU backend, and the entire training process,
including dataset generation, took 6 hours.

4.2 Benchmarks and QPU backends
We selected our benchmarks from [6] and [21], which comprise
23 quantum circuits with logical qubits ranging from 5 to 16. Our
compilation targets various quantum chip topologies, including the
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Figure 4: Improvement in SWAP insertion percentages com-
pared to TopGraph and SABRE, and runtime acceleration
against TopGraph, for target QPU backends: (a) IBM Q20
Tokyo, (b) Surface-13, and (c) IBM Falcon.

20-qubit IBMQ20 Tokyo, the 27-qubit IBM Falcon featuring a heavy-
hexagon topology [3], and the 13-qubit Surface-13 topology [15].

4.3 Results
We compare our work with the state-of-art heuristic algorithms
SABRE [5] (latest version is accessed by using SabreLayout and
SabreSWAP in Qiksit [12]) and TopGraph [6]. Fig. 4 shows the
improvement in terms of both the number of added gates and
compilation runtime towards each quantum circuit. On average
across these benchmarks, the number of added gates is reduced by
71%, 31%, and 26% compared to [5], and by 30%, 28%, 27% compared
to [6] on IBM Q20 Tokyo, Surface-13 and IBM Falcon, respectively.

We also note that the improvement in compilation runtime over
TopGraph [6] varies across different QPU backend topologies. For
IBM Q20 Tokyo, the average runtime enhancement is 138x, com-
pared to 14x for the Surface-13 backend and 5x for the IBM Falcon
backend. This discrepancy arises from variations in the number of
couplings within the QPU backends’ topologies.

The IBM Q20 boasts more couplings per qubit, providing a
broader range of SWAP sequence options. Consequently, fixed-
depth search methods face exponentially larger search spaces. In
contrast, the compilation runtime of our Seq2Seq model increases
linearly, making it more scalable for larger quantum computations.

5 Conclusion
In this study, we tackle the qubit routing problem employing a
Seq2Seq machine learning model with a Transformer architecture,
which significantly enhances the efficiency and reduces the number
of added gates in quantum circuits. Our findings highlight the con-
siderable potential of integrating machine learning with quantum
computing to optimize computational performance [7, 18].
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